Research articles

Venus mountain waves in the upper atmosphere simulated by a time-invariant linear full-wave spectral model
Hickey M.P., T. Navarro, G. Schubert, & R. L. Walterscheid (2022). Icarus, 114922
Atmospheric gravitational tides of Earth-like planets orbiting low-mass stars.
Navarro, T., T. M. Merlis, N/B. Cowan, N. Gomez (2022). The Planetary Science Journal, 3(7), 162.
1st / 2nd author
Venus’ upper atmosphere revealed by a GCM: I. Structure and variability of the circulation.
Navarro T., G. Gilli, G. Schubert, S. Lebonnois, F. Lefèvre, & D. Quirino (2021). Icarus, 114400.
Venus upper atmosphere revealed by a GCM: II. Model validation with temperature and density measurements.
Gilli G., T. Navarro, S. Lebonnois, D. Quirino, V. Silva, A. Stolzenbach, F. Lefèvre, & G. Schubert (2021), Icarus, 114432.
A Long‐Lived Sharp Disruption on the Lower Clouds of Venus
Peralta, J., T. Navarro, C.W. Vun, A. Sánchez‐Lavega, K. McGouldrick, ... + 17 coauthors (2020). GRL, 47(11).
Gravitational signatures of atmospheric thermal tides on Venus
Bills, B. G., T. Navarro, G. Schubert, A. Ermakov, & K.M. Gorski (2020). Icarus, 113568.
Atmospheric mountain wave generation on Venus and its influence on the solid planet's rotation rate
Navarro, T., Schubert, G., & Lebonnois, S. (2018), Nature Geoscience, 11.
The Challenge of Atmospheric Data Assimilation on Mars
Navarro, T., Forget, F., Millour, E., Greybush, S. J., Kalnay, E., & Miyoshi, T. (2017), Earth and Space Science, 4.
Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds
Navarro, T., Madeleine, J.-B., Forget, F., Spiga, A., Millour, E., Montmessin, F., & Määttänen, A. (2014), JGR (Planets), 119
Nth author
The Holy Grail: A road map for unlocking the climate record stored within Mars’ polar layered deposits.
Smith, I. B., …, T. Navarro, + 36 coauthors (2020). Planetary and space science, 184, 104841. 10.1016/j.pss.2020.104841
Impact of gravity waves on the middle atmosphere of Mars: A non‐orographic GW parameterization based on GCM and MCS observations
Gilli, G., F. Forget, A. Spiga, T. Navarro, E. Millour, L. Montabone, A. Kleinböhl, D.M. Kass, D.J. McCleese and J.T. Schofield (2020). JGR (Planets), 125 (3).
Vertical profiles of Mars 1.27 μm O2 dayglow from MRO CRISM limb spectra: Seasonal/global behaviors, comparisons to LMDGCM simulations, and a global definition for Mars water vapor profiles
Todd Clancy, R., Smith, M. D., Lefèvre, F., McConnochie, T. H., Sandor, B. J., Wolff, M. J., Lee, S. W., Murchie, S. L., Toigo, A. D., Nair, H., & Navarro, T. (2017), Icarus, 293
Snow precipitation on Mars driven by cloud-induced night-time convection
Spiga, A., Hinson, D. P., Madeleine, J.-B., Navarro, T., Millour, E., Forget, F., & Montmessin, F. (2017), Nature Geoscience, 10,
Unraveling the martian water cycle with high-resolution global climate simulations
Pottier, A., Forget, F., Montmessin, F., Navarro, T., Spiga, A., Millour, E., Szantai, A., & Madeleine, J.-B. (2017), Icarus, 291
Recent Ice Ages on Mars: The role of radiatively active clouds and cloud microphysics
Madeleine, J.-B., Head, J. W., Forget, F., Navarro, T., Millour, E., Spiga, A., Colaïtis, A., Määttänen, A., Montmessin, F., & Dickson, J. L. (2014), GRL, 41,
The influence of radiatively active water ice clouds on the Martian climate
Madeleine, J.-B., Forget, F., Millour, E., Navarro, T., & Spiga, A. (2012), GRL, 39
Parameterization of Rocket Dust Storms on Mars in the LMD Martian GCM: Modeling Details and Validation
Wang, C., Forget, F., Bertrand, T., Spiga, A., Millour, E., & Navarro, T. (2018), JGR (Planets), 123,